THE NEW RUSSIAN FEDERAL SPACE PROGRAM FOR 2016-2025 (FKP-2025)

Photo by Khrunichev

COMMERCIAL SPACE TECHNOLOGIES LTD

Date: 03/08/16

THE NEW RUSSIAN FEDERAL SPACE PROGRAM FOR 2016-2025 (FKP-2025)

A REPORT IN CONFIDENCE TO CST MEMBERS, ASSOCIATES AND CUSTOMERS

Commercial Space Technologies Ltd 67 Shakespeare Road, Hanwell, London W7 1LU Tel: 020 8840 1082 Fax: 020 8840 7776 E-mail: cst@commercialspace.co.uk

Document Change Log

Revision	Description	Date
А	Initial draft	May, 2016
В	Second Draft	7 th June, 2016
С	Third Draft	7 th July, 2016
D	Fourth Draft	31 st July, 2016

Written	OS
Edited	RO
Checked	AW
Authorised	AW
Doc No.	2016-CST-TR-FKP2025
Issue	D
Date	27 th May, 2016

CONTENTS

Page

Introduction	1
Section 1. The basis of the current Program	4
1.1. The earlier FKPs and their importance	5
1.2. The previous FKP-2015 Program, and the influence of its results on the main directions of the FKP-2025	15
1.3. The FKP-2025 development and approval process	23
Section 2. Contents, general goals and tasks of the FKP-2025 Program	30
Section 3. Directions of interest of space activity in the FKP-2025 and their planned	
provision	36
3.1. Communication satellites and systems	36
3.2. ERS satellites	42
3.3. Spacecraft for fundamental space research and for technical research	51
3.4. Manned astronautics	58
3.5. Launch systems and interplanetary transportation vehicles	62
3.6. Ground based TT&C infrastructure and facilities	72
Section 4. Feasibility assessment of the FKP-2025 and notable items	73
Conclusions	78
Referenced CST reports	79
Non-CST references	80
Appendix A – Attachment 4, Section I, Sub-section 1 – Satellite communications	81
Appendix B – Attachment 4, Section I, Sub-section 2 – Earth Remote Sensing (ERS)	83
Appendix C – Attachment 4, Section I, Sub-section 3 – Spacecraft for fundamental space studies and for technical studies	
Appendix D – Attachment 4, Section I, Sub-section 4 – Manned Astronautics	00
Appendix E – Attachment 4, Section I, Sub-section 5 – Launch Systems and Interplanetary Transportation Vehicles	87
Appendix F - Attachment 4, Section I, Sub-section 6 – On-ground TT&C Infrastructure and facilities	

TABLE OF FIGURES

Fig. 1. The launch of the first ISS module, 'Zarya' on November 20, 1998, confirmed the Russian commitment, despite economic difficulties	8
Fig. 2. The 'Zvezda' Russian module, which is shown as part of the ISS composition, was a 'pure' Russian contribution to the space station	13
Fig. 3. The launch of the 'Soyuz-ST' launch vehicle with two 'Galileo' satellites from Kourou	20
Fig. 4. The maiden launch of the 'Angara-A5' on December 23, 2014	21
Fig. 5. An artists impression of the PTK NP next generation manned spacecraft, on which rests the hope of Russian astronautics for further evolution of manned space missions.	25
Fig. 6. An artist's impression of the 'Angara-A5v' oxygen/hydrogen option of the basic 'Angara-A5' launch vehicle, that would be used for launching the PTK NP manned spacecraft	26
Fig. 7. An example of a Russian high-inclination space station concept	27
Fig. 8. An artist's impression of the 'Express-AMU5' satellite	
Fig. 9. An artist's impression of the 'Yamal-601' satellite	
Fig. 10. An artist's impression of the 'Express-RV'-type satellite	40
Fig. 11. A schematic view of the 'Polyarnaya Zvezda'-type satellite	41
Fig.12. The 'Canopus-V-IK' satellite in a test facility	43
Fig.13. The 'Resurs-P' satellite in an assembly workshop	44
Fig.14. The 'Electro-L' #2 satellite during pre-launch preparation	45
Fig. 15. The 'Meteor-M' #2 satellite in the process of installation into a vacuum ch	amber46
Fig. 16. An artists impression of the 'Condor' satellite in flight	47
Fig. 17. A schematic view of a pair of the 'Arctika-M' satellites in operation	48
Fig. 18. A diagram of the lunar unmanned programme	52
Fig. 19. A mock-up of the 'Bion-M' satellite	54
Fig. 20. Assembly of the 'Spectr-RG' spacecraft	55
Fig. 21. A cut-away view of the 'Resonans-MKA' spacecraft	56

Fig. 22. A launch of the 'Soyuz TMA-20M' manned spacecraft on March 19, 2016
Fig. 23. A full-scale technical mock-up of the PTK NP spacecraft's crew module-re-entry capsule (right), and its composite structure (left)
Fig. 24. The Multi-purpose Laboratory Module (MLM) in an assembly facility61
Fig. 25. An artist's impression of the Research and Power Module in autonomous flight61
Fig. 26. The first launch of the 'Soyuz-2.1a' from Vostochny, on April 28, 201664
Fig. 27. A view of the 'Angara-A5' launch vehicle on a launch facility in Plesetsk65
Fig. 28. An external view of the 'Block DM-03' upper stage
Fig. 29. A diagram of the KVTK oxygen / hydrogen upper stage
Fig. 30. Proposed versions of the 'Phenix' launch vehicle and its further development
Fig. 31. A model of the Transportation-Energy Module (TEM) equipped with the 1 MW class Nuclear Power/Propulsion Unit (YaEDU)71

ATTRIBUTION

Novosti Kosmonavtiki (Fig. 1), Novosti Kosmonavtiki (Fig. 2), Novosti Kosmonavtiki (Fig. 3), Russian MoD (Fig. 4), 'Energia' RKS (Fig. 5), Khrunichev SRPSC (Fig. 6), Roscosmos (Fig. 7), Information Space Systems (Fig. 8), mapgroup.com (Fig. 9), Information Space Systems (Fig. 10), telesputnik.ru (Fig. 11), VNIIEM (Fig. 12), Roscosmos (Fig. 13), news.sputnik.ru (Fig. 14), tass.ru (Fig. 15), Novosti Kosmonavtiki (Fig. 16), Arctic.info (Fig. 17), Roscosmos (Fig. 18), Roscosmos (Fig. 19), laspace.ru (Fig. 20), strf.r (Fig. 21), NASA (Fig. 22), MAKS-2015 (Fig. 23), Khrunichev GNPKTs (Fig. 24), 'Energia' RKK (Fig. 25), Lenta.ru (Fig. 26), Hi-News.ru (Fig. 27), ecoruspace.me (Fig. 28), Khrunichev GNPKTs (Fig. 29), technoomsk.ru (Fig. 30), MAKS-2013 (Fig. 31)

ACRONYMS AND ABBREVIATIONS

COSPAS	-	Space System for the Search of Vessels in Distress
CST	-	Commercial Space Technologies
ERS	-	Earth Remote Sensing
ESA	-	European Space Agency
EVA	-	Extra Vehicular Activity
FGB	-	Functional Cargo Block
FGUP	-	Federal State Unitary Enterprise
FKP	-	Federal Space Program
FSU	-	Former Soviet Union
FTsP	-	Federal Purposeful Program
GEO	-	Geostationary Earth Orbit
GLONASS	-	Global Navigation Satellite System
GTO	-	Geostationary Transfer Orbit
HEO	-	Highly Elliptical Orbit
ISS	-	International Space Station
KVSK	-	Oxygen Hydrogen Medium Class
KVTK	-	Oxygen Hydrogen Heavy Class
LEO	-	Low Earth Orbit
MKA	-	Reusable Spacecraft
MLM	-	Multi-purpose Laboratory Module
MoD	-	Ministry of Defence
MOM	-	Ministry of General Machine Building
NAKU KA	-	Automated Complexes for Control of Spacecraft
NASA	-	National Aeronautics and Space Administration
NEM	-	Research and Power Module
NKU KA	-	Complex for Control of Spacecraft in Deep Space
PTK NP	-	New Generation Piloted Transport Ship
RKA	-	Russian Space Agency
ROS	-	Russian Orbital Station
RRK	-	Development of Russian Spaceports
RUR	-	Russian Roubles
SARSAT	-	Search and Rescue Satellite Aided Tracking
TEM	-	Transportation Energy Module
TEO	-	Technical Economic Grounding
TsUP	-	Mission Control Centre
TT&C	-	Telemetry, Tracking & Control
YaEDU	-	Nuclear Power/Propulsion Unit
		1

INTRODUCTION

The Russian civil space activities are being planned for long timescales through specially developed programs, which are considered to be of state importance, being approved at governmental level. Annual budgets to support the development of these space activities, are being allocated from the state budget, in accordance with programs in which funding has been secured, or for which concrete plans are in place, for all their corresponding items. Therefore, these programs provide the main definitive documents for planning this type of space activity in Russia currently, and provide the legislative grounds for them to proceed, including results to be achieved in planned timescales, and levels of funding to be allocated for the planned works during their implementation periods.

The programs come in two types: The main one being the Federal Space Programs (FKPs by the Russian acronym) that cover the main directions of space activity in a single document. This document defines the main organisational statements, and then goes into more detail on the individual directions and features (e.g., risk assessments), and a separate Technical / Economic precis, in which analysis and assessments of required expenditures are presented.

Besides the FKPs, which are being developed and realised under the aegis of the national space agency¹, there are also what are known as special Federal Purposeful Programs (FTsPs by the Russian acronym), that are being developed, approved and realised for some aspects of space activities, with them being realised jointly by different state bodies, - mostly by the same space agency, but also with the participation of the Russian Ministry of Defense (MoD). This gives these Programs a certain dual purpose nature.

Currently, the main FTsPs, are the GLONASS Federal Purposeful Program, which is dedicated to maintaining operation of the Global Navigation Satellite System, and the 'Development of Russian Spaceports' (RRK by the Russian acronym) Federal Purposeful Program, that defines the development of Russian civilian spaceports (the new Vostochny spaceport and, to a significantly lesser degree, Baikonur). Due to this division, these important directions; provision of satellite navigation, and development of spaceports, are not included in the Federal Space Programs, but these Programs contain the planning for all the other directions of civilian space activity.

¹ This has had several different official designations, and has been transformed recently to the 'Roscosmos' State Corporation

RUSSIAN FKP-2025 REPORT

It is noted, that there are space activities being regulated in Russia by yet more state programs. These are the Military Space Programs, that define military related space activities over consecutive periods, and they are realised by corresponding units of the MoD. The Military Space Programs have been never published, and, therefore, cannot be used for an assessment of general Russian space activity.

Therefore, the Federal Space Programs are the main interest, and the new Russian Federal Space Program for 2016-2025 (FKP-2025), which has finally recently been approved, forms the subject of this report. This Program is a continuation of preceding FKPs, that can be considered to have formed the foundations for it, whilst the special importance of the current FKP-2025, is because of the necessity to provide space activities with sufficient funding, during the years of economic crisis, and just after the serious re-organisation of the Russian space industry's structure.

In order to understand preconditions for preparation of the current program, laid down by achieving previous Federal Space Program goals, **Sub-section 1.1** of **Section 1**, describes a brief history of Federal Space Programs, before the preceding FKP-2015, and their general results; FKP-2015's main statements, goals and planned results, along with a comparison with achieved results, are briefly described in **Sub-section 1.2**. Exposition of the succession between the FKP-2015, and the current FKP-2025, with its directions and causes, is described there too. Lastly, the development process of the FKP-2025 drafts and revisions, with gradual reduction of the the funding to be allocated, and with corresponding changes of the planned works (that can also be considered the basis for the current Program's final approval) is described briefly in **Sub-section 1.3**.

Section 2 contains a review of the Program's official set of documents, listing their contents, and a description of main general statements of the FKP-2025, including its goals and tasks as they are described in the official documents;.

Section 3 contains brief descriptions of those items and sub-items of the Program, which are of most interest for assessing the planned Russian space activities, with main planned results (in the form of requirements), terms and volumes of funding to be allocated distributed as follows: Sub-section 3.1 - communications satellites and systems, including broadcasting, relay and search/rescue satellites and systems, but excluding the GLONASS navigation system², Sub-section 3.2 - ERS satellites, including meteorological and mapping satellites, Sub-section 3.3 - spacecraft for fundamental space research and for technical research, including scientific

² GLONASS is being developed and operated by a special Program (GLONASS FTsP)

RUSSIAN FKP-2025 REPORT

satellites, interplanetary probes and biological satellites, **Sub-section 3.4** - manned astronautics, including the development of new manned spacecraft, and the proposed creation of a new national orbital space station, **Sub-section 3.5** - launch systems and interplanetary transportation vehicles, including, separate to launch vehicles, developments of advanced upper stages, as well as of advanced rocket engines for them, and of nuclear-powered space tugs, **Sub-section 3.6** - ground based TT&C infrastructure and facilities, excluding the development of spaceports, since this will be provided within a special Purposeful Program (RRK FTsP). framework

The feasibility of the FKP-2025, and its most important items, is assessed in Section 4, where comments are presented for a number of main items of the Program, from the perspective of assessing their feasibility by analysing the conditions in which this feasibility could be possible.

The **Conclusions** contain a brief summary of the information presented and of the results of its assessment.

REFERENCED CST REPORTS

(indicated in square brackets in the text; a page, on which the reference is made at a first time, is shown in round brackets after each reference below)

- 1. Funding for Russian Space Programs: History and Current Status, 2008 (page 6).
- The Federal Space Program of Russia for 2001-2005, Plans and Comments, 2001 (page 6).
- 3. The Russian Federal Space Program: Results of the FKP-2005 and the prospects of the following FKP-2015 Program, 2006 (page 6).
- On Eve of Big Changes: a Near Completion of the 'Roscosmos' State Corporation Establishment and a Waited Approval of Russia's Federal Space Program for 2016-2025, 2016 (page 6).
- Khrunichev: Cooperation for the Sake of Mutual Success (and Self Interest), 1996 (page 9).
- The Recent Failures in Russian Space Activity: Causes and Consequences, 2012 (page 24).
- The Next Failure of Russian Launch Vehicle and the Supposed Organizational Actions for Termination of the Series of Launcher Failures (the supplement to 'The Recent Failures in the Russian Space Activity: Causes and Consequences' report), 2012 (page 24).
- One more failure of the Proton-M launch vehicle: why the continued series of failures in Russian astronautics?, 2013 (page 24).
- 9. The Russian Space Industry Changes in Organizational Structure, 2014 (page 24).
- New Merging after Dissociation: a Coming Foundation of 'Roscosmos' State Corporation, 2015 (page 24).
- 11. The Russian Space Budget for 2016 a Budget of Transitional Period, 2016 (page 31).
- 12. The New Russian Initiative on a Continuation of Attempts to Use Nuclear Power in the Space, 2010 (page 63).

NON-CST REFERENCES

(indicated in slant brackets in the text; a page, on which the reference is made at a first time, is shown in round brackets after each reference below)

- 1. Novosti Kosmonavtiki, Vol. 5, # 04 (93), 1995 (page 8).
- The Federal Space Program of Russia for the Period until 2000, 1993 (*in Russian*) (page 8).
- 3. Novosti Kosmonavtiki, Vol. 26, # 03 (398), 2016 (page 29).
- 4. <u>http://tass.ru/kosmos/2747297</u>, March 17, 2016 (page 31).

